HRTEM Investigation of Silicon Nitride Powder Coated with Yttrium Oxide-Precursor

I. J. Davies, B. Djuricic, and S. Pickering
Institute for Advanced Materials, The Netherlands
and
J. Th. M. De Hosson
Technische Fysica, Rijksuniversiteit Groningen, The Netherlands

(Received: Feb. 4, 1997 Accepted: Feb. 19, 1997)

Abstract

Ceramic matrix composites based on silicon nitride (Si₃N₄) are potential candidates for use as high-temperature structural materials. However, the high melting point and low self-diffusion coefficient of Si₃N₄ makes fabrication difficult without the addition of a sintering aid such as yttrium oxide (Y₂O₃) or aluminium oxide (Al₂O₃). Addition of sintering aid through mechanical mixing does not produce homogeneous distribution on the microscale and results in poor control of the sintered Si₃N₄ intergranular phases which decreases the oxidation resistance and mechanical properties of such ceramics. An improved method for homogeneous distribution of sintering aid might involve the coating of each ceramic powder particle with a small amount of sintering aid techniques previously proposed include precipitation from metal salts or metal hydroxides, and electrostatic deposition from a colloidal suspension.

In this study, Si_3N_4 powders were coated with 5 wt.% Y_2O_3 -precursor using a chemical precipitation technique and calcined up to 1400 °C in nitrogen or argon. Investigations using transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM) were carried out in order to determine the dependence of coating morphology and atomic structure on calcination conditions. Energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) were also utilised to determine the dependence of the amount of yttrium and phases present on processing conditions.

It was concluded from EDS observations that Y_2O_3 -precursor was successfully deposited onto the surface of Si_3N_4 whilst direct observation from HRTEM indicated the precursor to consist initially of discrete hemispherical nanocrystalline particles (with typical dimensions 10-100 nm) which were unaffected by calcination at 600 °C in nitrogen. However, calcination at 1400 °C in nitrogen or argon resulted in partial sintering of the coated powder together with crystallisation of the Y_2O_3 -precursor.

1. Introduction

Current materials for use in high strength structural applications at 1000 °C comprise chiefly of nickel-based alloys whilst operating temperatures of 1100 °C require the use of single-crystal nickel-based alloys. Applications at these temperatures include those of aerospace engine casings and turbine blades. However, recent emphasis on improved performance and operating efficiency for such applications has led to a demand for increased operating temperatures which may require widespread utilisation of monolithic ceramics.

However, the relatively low self-diffusion of most ceramics below their decomposition temperature generally necessitates use of small amounts (typically <5 wt.%) of sintering aid which reacts with the amorphous layer (mostly SiO₂ together with some Si₂N₂O)² formed on Si₃N₄ and SiC particles exposed to the

♦ Corresponding author. Present address: Sun Pearl Jindaiji 205, 4-8-6 Jindaiji-Motomachi, Chofu Shi, Tokyo 182, Japan (e-mail: yasuda davies@msn.com)

atmosphere and allows sintering to proceed via a liquid phase. For the silicon nitride (Si₃N₄) and silicon carbide (SiC) group of ceramics, sintering aids include aluminium oxide (Al₂O₃), aluminium nitride (AlN), and rare earth oxides such as yttrium oxide (Y₂O₃)³⁻⁷. However, use of sintering aids promotes formation of amorphous intergranular phases in the final ceramic which often limit high temperature structural use due to grain boundary shearing and reduced oxidation resistance^{8,9}.

It is believed that improved high temperature properties for these ceramics may be achieved through reducing the proportion of sintering aid present in the green body together with production of intergranular phases in the final ceramic which are more resistant to oxidation, e.g., Y₂Si₂O₇. Deposition of a small amount of sintering aid on the surface of each ceramic particle would significantly reduce the proportion of sintering aid required compared to the present technique of mechanically mixing ceramic powder and sintering aid prior

to densification. Deposition techniques also have the benefit of a relatively homogeneous distribution of intergranular phases in the final ceramic. Methods utilised to deposit sintering aid on ceramic particles include in-situ precipitation and co-precipitation from metal salts ^{10,11} or metal alkoxides ¹²⁻¹⁶, electrostatic deposition of a colloidal sintering agent ¹⁷, and precipitation from nitrate compounds in the presence of urea ¹⁸. However, microstructural investigation at the atomic level for this family of coating techniques has been extremely limited.

The present investigation was carried out to determine the microstructure of nano-coated Y₂O₃-precursor deposited onto Si₃N₄ powder particles using forced hydrolysis of an aqueous solution of yttrium nitrate (Y(NO₃)₃) in the presence of urea (CON₂H₄). Techniques utilised included high resolution transmission electron microscopy (HRTEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD).

2. Experimental Procedure

The Si_3N_4 powder used in this experiment consisted of 95 % α - and 5 % β -phase with equiaxed particles of size 0.1-0.3 μm and a specific surface area of 11.1 m^2g^{-1} (UBE SN-E-10, Ube Industries Ltd., Japan). The yttrium nitrate compound utilised was yttrium nitrate hexahydrate $(Y(NO_3)_3.6H_2O)$ (Jannsen Chemicals, Reagent Grade) with an amount equivalent to 5 wt.% Y_2O_3 being used.

The technique utilised to coat the Si₃N₄ particles is detailed elsewhere solution of CON₂H₄ and Y(NO₃)₃ adjusted to a pH of 2.0-2.5 with nitric acid (HNO₃) to which the Si₃N₄ particles were added. The solution was then heated to 86 °C under constant agitation for 1 hour during which time the CON₂H₄ decomposed and increased the pH of the solution resulting in precipitation and deposition of an unspecified Y_xO_yH_z compound onto the Si₃N₄ surface. After washing and drying at 80-90 °C for 12 hours the powders were calcined for 2 hours under one of the following regimes:

- (i) 600 °C and nitrogen atmosphere,
- (ii) 1400 °C and nitrogen atmosphere, or

(iii) 1400 °C and argon atmosphere.

Samples of coated Si₃N₄ powder were prepared for HRTEM and TEM by ultrasonically dispersing the powder in isopropanol for 5 minutes after which a small droplet of the suspension was placed onto a carbon filmed grid, followed by evaporation of the isopropanol.

HRTEM was carried out using a JEOL 4000EX/II (point resolution 1.65 Å) at 400 kV with images being recorded on negative film at magnifications between 3-4 × 10³. Sections of the negative were then digitised with a CCD camera (Kodak Megaplus model 1.4 (1322 × 1035 pixels); 60 mm f2.8 AF Micro Nikkor lens) and further enhanced using image analysis software running on a personal computer. Due to the specimen preparation technique, all HRTEM bright field (BF) images contained an amorphous background image due to the carbon film.

TEM utilised a JEOL 200CX at 200 kV fitted with EDS (Edax 9100, Edax Laboratories). Selected specimens were placed in a graphite holder and rotated so as to be 45° from both the incident electron beam and EDS detector. The electron beam was focused onto single powder particles with an analysis time of 500 seconds being used and results being averaged from a minimum of 5 separate particles.

XRD of coated powders was carried out on a Philips PW173 X-ray diffractometer at 50 kV and 40 mA using CuK α radiation and silicon powder as an internal standard. Diffraction patterns were recorded for the range $2\Theta = 10$ -80°.

3. Results and Discussion

Figure 1 illustrates the edge of a typical uncoated Si₃N₄ particle observed in this investigation, with negligible amorphous surface layer being apparent. Although previous researchers² had suggested an oxide layer of typically 3-5 nm to be present on the surface of Si₃N₄ particles, it is also known that residual fluorine may decrease the surface oxygen content such that amorphous surface layers of <1 nm thickness may be feasible. Thus, one explanation for the lack of a distinct amorphous surface layer in the present Si₃N₄ particles would be a relatively high fluorine content but

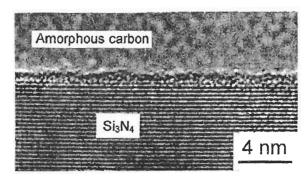


Fig. 1 HRTEM micrograph illustrating the surface of as-received Si₃N₄ with negligible amorphous surface (oxide) layer.

this has not been confirmed. Although most uncoated Si₃N₄ particles exhibited no distinct amorphous surface layer, it should be stressed that surface (oxide) layers of several nanometres thickness were occasionally observed indicating that surface oxygen content may vary from particle to particle.

Observation of coated Si₃N₄ powder prior to indicated calcination (suspected) Y_2O_3 precursor to be present, though continuously distributed on the Si₃N₄ surface but instead consisting of discrete hemispherical particles. Such a result is consistent with the low proportion of Y₂O₃-precursor present in this system together with previous researchers who suggested that only a portion of the Si₃N₄ surface is available for nucleation of Y³⁺ ions due to the presence of silylamine (SiNH2 or SiNH) groups¹¹.

Figure 2 illustrates a typical Y₂O₃-precursor particle attached to the surface of Si₃N₄ powder with the particle having approximate dimensions of 50 nm diameter and 12 nm thickness. Coating particles were generally noted with diameters in the range 10-100 nm whilst thickness varied to a lesser extent (5-20 nm). From Figure 2(b) it may be observed that Y₂O₃-precursor particles under these conditions possessed nanocrystalline structures whilst highly strained lattice structures parallel to the particle outer surface were often noted. Although the majority of Y₂O₃-precursor particles were approximately hemispherical in shape, in a small number of cases the Y₂O₃precursor particle showed itself as a highly strained lattice (<20 atomic layers thick) running almost parallel to the Si₃N₄ surface with a length (diameter) of >100 nm (Figure 3). For this case the structure was crystalline to a

Fig. 2 HRTEM micrographs illustrating a nanocrystalline Y_2O_3 -precursor hemispherical particle attached to the surface of uncalcined Si_3N_4 .

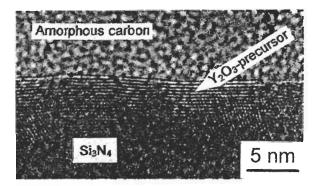


Fig. 3 HRTEM micrograph showing a Y₂O₃precursor particle with highly strained lattice
structure running parallel to the Si₃N₄ surface.

far greater extent than that observed in Figure 2(b) suggesting a different formation mechanism.

An EDS spectrum for uncalcined coated Si₃N₄ powder has been presented in Figure 4(b) whilst a background reference spectrum (taken in the vicinity of coated Si₃N₄ particles) is given in Figure 4(a). The EDS spectrum of the coated Si₃N₄ particle (Figure 4(b)) possessed

addition peaks not present in Figure 4(a) which were attributed to Si and Y transitions. From this result it was concluded that Y co-exists with Si with the most likely scenario being that materials Y₂O₃-precursor (of unknown composition) were present on the Si₃N₄ surface in the form of mainly hemispherical particles. Comparison between Si and Y peaks in Figure 4(b) gave calculated atomic percentages of 98.0 (+/-0.8) % and 2.0 (+/-0.8) %, respectively, which were in excellent agreement with predicted values of 97.9 % Si and 2.1 % Y assuming complete deposition of precipitated Y_2O_3 -precursor onto Si₃N₄. Thus, technique is shown to be highly efficient at coating ceramic particles with small amounts of sintering aid precursor. This result, combined with the existence of Y₂O₃-precursor particles on the Si₃N₄ surface, indicates the most probable coating scenario to have been heterogeneous nucleation of Y₂O₃-precursor on the Si₃N₄ surface¹⁸.

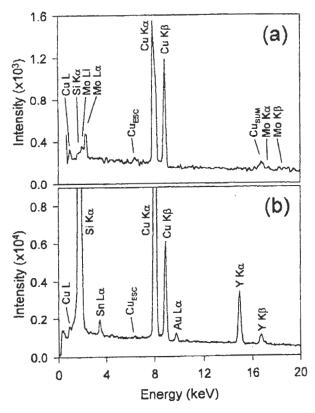


Fig. 4 EDS spectra for uncalcined coated Si₃N₄ powder: (a) background reference, and (b) powder particle.

The XRD spectrum of coated Si₃N₄ prior to calcination yielded only peaks assigned to Si₃N₄. Such a result would be expected taking

into account the small amount of Y₂O₃-precursor present and its nanocrystalline morphology.

HRTEM micrographs illustrating the structure of Y₂O₃-precursor particles on the surface of Si₃N₄ powder calcined for 2 hours at 600 °C in N₂ have been presented in Figure 5 and Figure 6. The structure of the Y₂O₃-precursor particle in Figure 5 is essentially nanocrystalline and similar to that seen previously for uncalcined coated powder (Figure 2). It would appear that the alcination condition employed (2 hrs/600 °C/N₂) was not sufficient to initiate ordering of the Y₂O₃-precursor and this is confirmed from Figure 6 which presents a Y₂O₃-precursor particle with an almost amorphous structure.

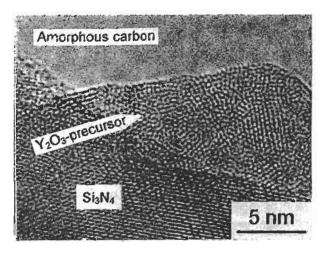


Fig. 5 HRTEM micrograph illustrating a nanocrystalline Y₂O₃-precursor particle on the surface of Si₃N₄ powder calcined for 2 hours at 600 °C in nitrogen.

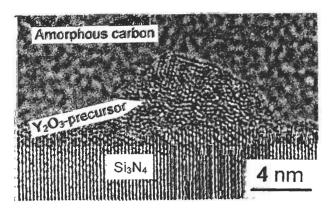


Fig. 6 HRTEM micrograph showing an amorphous Y₂O₃-precursor particle on the surface of Si₃N₄ powder calcined for 2 hours at 600 °C in nitrogen.

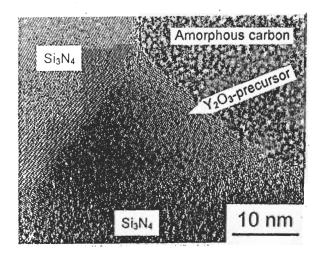


Fig. 7 HRTEM micrograph illustrating crystallised Y₂O₃-precursor between Si₃N₄ powder particles calcined for 2 hours at 1400 °C in nitrogen.

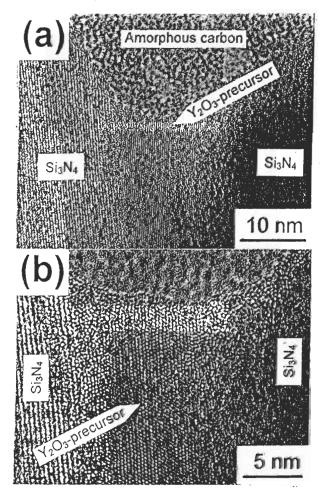


Fig. 8 HRTEM micrographs showing crystallised Y_2O_3 -precursor between Si_3N_4 powder particles calcined for 2 hours at 1400 °C in argon.

In order to promote ordering of the Y_2O_3 -precursor particles, coated Si_3N_4 powder was calcined at 1400 °C in N_2 or Ar with

microstructural characteristics of the resultant Y_2O_3 -precursor being significantly different compared to that observed earlier (i.e., individual Y_2O_3 -precursor hemispherical particles adhered to the Si_3N_4 surface). After calcination at 1400 °C in N_2 or Ar the Y_2O_3 -precursor possessed a well-defined crystal structure and preferentially positioned at the "neck" of partially sintered Si_3N_4 particles (Figure 7 and Figure 8).

Such observations may be explained through the scenario of low temperature liquid phase production derived from the reaction of Y₂O₃precursor particles with available oxygen on the Si₃N₄ surface. Such liquid phases are known to occur in the presence of Y₂O₃ sintering aid and might also be expected to promote dissolution of Si₃N₄ (though partial dissolution is a more realistic scenario in the present case taking into account the relatively low temperature and short time utilised). Surface tension effects would tend to concentrate the liquid phase at the contact point or "neck" of Si₃N₄ particles. A probable next step would involve epitaxial deposition of Si₃N₄ or Y-Si-O-N from the liquid phase onto the remaining Si₃N₄ particle followed by crystallisation of a Y₂O₃-rich phase at the "neck" of Si₃N₄ particles during cooling. Further evidence indicating the formation of Y₂O₃-rich crystalline phases under these calcination conditions may be inferred from the XRD spectrum for coated Si₃N₄ calcined for 2 hours at 1400 °C in N₂ (Figure 9). In addition to prominent peaks attributed to α - and β -

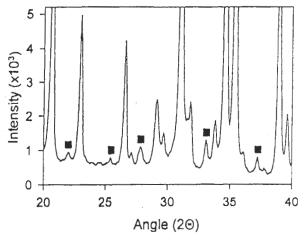


Fig. 9 XRD spectrum of coated Si₃N₄ powder after calcination for 2 hours at 1400 °C in nitrogen. All peaks are identified as Si₃N₄ except those labeled "■" which are attributed to the Y₂O₃-rich crystalline phase.

Si₃N₄, lower intensity peaks were also present within the 2Θ range $20-40^{\circ}$ at positions identical to those expected for several compositions within the Y-Si-O-N phase diagram. However, the relatively large full width at half maximum (FWHM) of the Y₂O₃rich peaks together with the superimposition of a large number of Si₃N₄ peaks in the same 2Θ range precluded identification of the exact phase(s) present, though likely candidates included Y₂O₃. The relatively large FWHM of Y₂O₃-rich peaks was at least partially attributed to variations in surface oxygen concentration between individual Si₃N₄ particles resulting in Y₂O₃-rich crystalline regions with different chemical composition and/or phases.

4. Conclusions

- (i) Y₂O₃-precursor was successfully deposited onto the surface of Si₃N₄ with negligible loss of Y either during the deposition procedure or subsequent calcination regimes.
- (ii) Y₂O₃-precursor on the uncalcined powder generally exhibited itself as hemispherical nanocrystalline particles. The diameter of individual Y₂O₃-precursor particles was in the range 10-100 nm whilst the thickness was limited to 5-20 nm. A calcination of 2 hours at 600 °C in N₂ had no effect on the Y₂O₃-precursor structure.
- (iii) Calcination for 2 hours at 1400 °C in N₂ or Ar produced Y₂O₃-precursor with a well-defined crystal structure preferentially positioned at the "neck" of partially sintered Si₃N₄ particles. These characteristics were attributed to formation of a liquid phase involving the Y₂O₃-precursor and Si₃N₄ surface oxide layer.

Acknowledgments

This research was carried out as part of the European Commission Research and Development Programme. Two of the authors (IJD and BD) were supported during this work as visiting scientists by the European Commission.

References

- 1. M. H. Lewis and R. J. Lumby, "Nitrogen ceramics: liquid phase sintering", Powder Metallurgy, **26(2)** 73-81 (1983)
- 2. M. N. Rahaman, Y. Boiteux, and L. C. De Jonghe, "Surface characterization of silicon nitride and silicon carbide

- powders", Amer. Ceram. Soc. Bull., 65 1171-1176 (1986)
- 3. G. Wotting and G. Ziegler, "Powder characteristics and sintering behaviour of Si₃N₄ powders", Powder Metallurgy International, **18(1)** 25-32 (1986)
- 4. R. A. Cutler and T. B. Jackson, "Liquid phase sintered silicon carbide", in Ceramic materials and components for engines: Proceedings of the 3rd international symposium (Las Vegas, NV, U.S.A., 1988), 309-318, edited by V. J. Tennery, American Ceramic Society, Westerville, OH, U.S.A. (1989)
- 5. L. Cordrey, D. E. Niesz, and D. J. Shanefield, "Sintering of silicon carbide with rare-earth oxide additions", Ceram. Trans., 7 618-636 (1990)
- M. A. Mulla and V. D. Krstic, "Low-temperature pressureless sintering of β-silicon carbide with aluminium oxide and yttrium oxide additions", Amer. Ceram. Bull., 70 439-443 (1991)
- 7. R. R. Lee and W. C. Wei, "Fabrication, microstructure, and properties of SiC-AlN ceramic alloys", Ceram. Eng. Sci. Proc., 11 1094-1121 (1990)
- 8. M. H. Lewis and P. Barnard, "Oxidation mechanisms in Si-Al-O-N ceramics", J. Mater. Sci., 15 443-448 (1980)
- 9. D. M. Mieskowski and W. A. Sanders, "Oxidation of silicon nitride sintered with rare-earth oxide additions", J. Amer. Ceram. Soc., 68(7) C160-163 (1985)
- 10. T. M. Shaw and B. A. Pethica, "Preparation and sintering of homogeneous silicon nitride green compacts", J. Amer. Ceram. Soc., 69(2) 88-93 (1986)
- 11. J. -S. Kim, H. Schubert, and G. Petzow, "Sintering of Si₃N₄ with Y₂O₃ and Al₂O₃ added by co-precipitation", J. Europ. Ceram. Soc., **5** 311-319 (1989)
- 12. T. -I. Mah, K. S. Mazdiyasni, and R. Ruh, "Characterisation and properties of hotpressed Si₃N₄ with alkoxy-derived CeO₂ or Y₂O₃ as sintering aids", Amer. Ceram. Soc. Bull., **58**(9) 840-844 (1979)
- C. -M. Wang and F. L. Riley, "Aluminacoating of silicon nitride powder", J. Europ. Ceram. Soc., 10 83-93 (1992)
- 14. M. Kulig, W. Oroschin, and P. Greil, "Solgel coating of silicon nitride with Mg-Al oxide sintering aid", J. Europ. Ceram. Soc., 5 209-217 (1989)

- 15. M. Omori and H. Takei, "Preparation of pressureless-sintered SiC-Y₂O₃-Al₂O₃", J. Mater. Sci., 23 3744-3749 (1988)
- H. K. Lee and K. Y. Kim, "Synthesis of Al₂O₃ coated SiC composite powder", J. Mater. Sci. Lett., 13 1149-1150 (1994)
- 17. E. Liden, M. Persson, E. Carlstrom, and R. Carlsson, "Electrostatic adsorption of a colloidal sintering agent on silicon nitride particles", J. Amer. Ceram. Soc., 74(6) 1335-1339 (1991)
- 18. A. K. Garg and L. C. De Jonghe, "Microencapsulation of silicon nitride

- particles with yttria and yttria-alumina precursors", J. Mater. Res., **5(1)** 136-142 (1990)
- B. Djuricic, I. J. Davies, S. Pickering, D. McGarry, E. Bullock, M. Verwerft, P. M. Bronsveld, and J. Th. M. De Hosson, "Study of particle coatings for the design of intergranular phases in engineering ceramics", Silicates Industriels, 60(7-8) 203-210 (1995)